Synergistic Effect of Ti3C2Tx MXene Nanosheets and Tannic Acid–Fe3+ Network in Constructing High-Performance Hydrogel Composite Membrane for Photothermal Membrane Distillation
DOI:
10.1021/acs.nanolett.3c04159
Publication Date:
2024-01-02T19:10:11Z
AUTHORS (7)
ABSTRACT
Photothermal membrane distillation (PMD) has emerged as a promising and sustainable approach for seawater desalination and wastewater purification. However, the wide application of the technique is severely impeded by low freshwater production and membrane fouling/wetting issues. Herein, we developed an advanced hydrogel-engineered membrane with simultaneously enhanced photothermal conversion capacity and desired fouling and wetting resistance for PMD. By the synergies of photothermal Ti3C2Tx MXene nanosheets and the tannic acid-Fe3+ network in the hydrogel, the membrane was endowed with excellent surface self-heating ability, yielding the highest freshwater production rate (1.71 kg m-2 h-1) and photothermal efficiency among the fabricated hydrogel composite membranes under 1 sun irradiation. Meanwhile, the PMD membrane could robustly resist oil-induced fouling and surfactant-induced wetting, significantly extending the membrane lifespan in treating contaminated saline water. Furthermore, when desalinating real seawater, the membrane exhibited superior durability with a stable vapor flux and excellent ion rejection (e.g., 99.24% for boron) for 100 h.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (56)
CITATIONS (26)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....