Conformational Contrast of Surface-Mediated Molecular Switches Yields Ångstrom-Scale Spatial Resolution in Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy

02 engineering and technology 0210 nano-technology
DOI: 10.1021/acs.nanolett.6b03958 Publication Date: 2016-10-31T16:14:31Z
ABSTRACT
Tip-enhanced Raman spectroscopy (TERS) combines the ability of scanning probe microscopy (SPM) to resolve atomic-scale surface features with the single-molecule chemical sensitivity of surface-enhanced Raman spectroscopy (SERS). Here, we report additional insights into the nature of the conformational dynamics of a free-base porphyrin at room temperature adsorbed on a metal surface. We have interrogated the conformational switch between two metastable surface-mediated isomers of meso-tetrakis(3,5-ditertiarybutylphenyl)-porphyrin (H2TBPP) on a Cu(111) surface. At room temperature, the barrier between the porphyrin ring buckled up/down conformations of the H2TBPP-Cu(111) system is easily overcome, and a 2.6 Å lateral resolution by simultaneous TERS and STM analysis is achieved under ultrahigh vacuum (UHV) conditions. This work demonstrates the first UHV-TERS on Cu(111) and shows TERS can unambiguously distinguish the conformational differences between neighboring molecules with Ångstrom-scale spatial resolution, thereby establishing it as a leading method for the study of metal-adsorbate interactions.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (48)
CITATIONS (109)