Atomically Thin Nonlinear Transition Metal Dichalcogenide Holograms

02 engineering and technology 0210 nano-technology
DOI: 10.1021/acs.nanolett.9b02740 Publication Date: 2019-08-16T17:15:41Z
ABSTRACT
Nonlinear holography enables optical beam generation and holographic image reconstruction at new frequencies other than the excitation fundamental frequency, providing pathways toward unprecedented applications in optical information processing and data security. So far, plasmonic metasurfaces with the thickness of tens of nanometers have been mostly adopted for realizing nonlinear holograms with the potential of on-chip integration but suffering from low conversion efficiency and high absorption loss. Here, we report a nonlinear transition metal dichalcogenide (TMD) hologram with high conversion efficiency and atomic thickness made of only single nanopatterned tungsten disulfide (WS2) monolayer, for producing optical vortex beams and Airy beams as well as reconstructing complex holographic images at the second harmonic (SH) frequency. Our concept of nonlinear TMD holograms paves the way toward not only the understanding of light-matter interactions at the atomic level but the integration of functional TMD-based devices with atomic thickness into the next-generation photonic circuits for optical communication, high-density optical data storage, and information security.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (36)
CITATIONS (67)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....