Photoresponsive Bridged Polysilsesquioxanes for Protein Immobilization/Controlled Release and Micropatterns
Light
Surface Properties
Static Electricity
Serum Albumin, Bovine
01 natural sciences
0104 chemical sciences
Immobilized Proteins
Coumarins
Animals
Cattle
Organosilicon Compounds
Adsorption
DOI:
10.1021/acsami.1c10542
Publication Date:
2021-07-23T17:33:22Z
AUTHORS (10)
ABSTRACT
Protein micropatterning on microfabricated surfaces is a promising technology in applications for biochip microarrays, cell attachment, and biosensors. In the present work, a novel photoresponsive polymer based on light-triggered charge shifting bridged polysilsesquioxane (CBPS) is designed and prepared. The organic bridged units containing a photocleavable group of diethylaminocoumarin-4-yl in CBPS could be cleaved rapidly upon irradiation at 410 nm, resulting in the polymer surface switching from a positive charge to a negative charge property. The photoresponsive behavior of CBPS is studied using FTIR, UV-vis, SEM, fluorescence microscopy, and zeta potential analysis. Proteins are easily immobilized on the polymer surface via electrostatic interactions and released after irradiation as required. Combined with photopatterning techniques, accurate protein micropatterns are fabricated by covering a photomask upon irradiation. A gradient protein pattern is also spatially and temporally controlled by regulating irradiation parameters. This smart photoresponsive polymer surface provides a gentle and straightforward strategy to micropattern charged proteins. Moreover, the photoresponsive polymer holds permitting potential in biomedical applications such as conjugating biomolecules, guiding cell arrays, and resisting bacteria.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (46)
CITATIONS (3)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....