Low-Coordinated Zn–N2 Sites as Bidirectional Atomic Catalysis for Room-Temperature Na–S Batteries

DOI: 10.1021/acsami.3c02599 Publication Date: 2023-05-25T03:15:42Z
ABSTRACT
The rational design of advanced catalysts for sodium-sulfur (Na-S) batteries is important but remains challenging due to the limited understanding of sulfur catalytic mechanisms. Here, we propose an efficient sulfur host consisting of atomic low-coordinated Zn-N2 sites dispersed on N-rich microporous graphene (Zn-N2@NG), which realizes state-of-the-art sodium-storage performance with a high sulfur content of 66 wt %, high-rate capability (467 mA h g-1 at 5 A g-1), and long cycling stability for 6500 cycles with an ultralow capacity decay rate of 0.0062% per cycle. Ex situ methods combined with theoretical calculations demonstrate the superior bidirectional catalysis of Zn-N2 sites on sulfur conversion (S8 ↔ Na2S). Furthermore, in situ transmission electron microscopy was applied to visualize the microscopic S redox evolution under the catalysis of Zn-N2 sites without liquid electrolytes. During the sodiation process, both surface S nanoparticles and S molecules in the mircopores of Zn-N2@NG quickly convert into Na2S nanograins. During the following desodiation process, only a small part of the above Na2S can be oxidized into Na2Sx. These results reveal that, without liquid electrolytes, Na2S is difficult to be decomposed even with the assistance of Zn-N2 sites. This conclusion emphasizes the critical role of liquid electrolytes in the catalytic oxidation of Na2S, which was usually ignored by previous works.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (55)
CITATIONS (17)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....