Targeting an Initiator Allergen Provides Durable and Expansive Protection against House Dust Mite Allergy
Der p 1
0301 basic medicine
GENES
AIRWAY
INNATE LYMPHOID-CELLS
610
airway inflammation
Medicinal
protease inhibitor
03 medical and health sciences
IL-25
GLUTATHIONE
eosinophil
Pharmacology & Pharmacy
house dust mite allergome
Science & Technology
POTENT
FLUID
3. Good health
Chemistry
ASTHMA
MEDIATORS
Life Sciences & Biomedicine
DER-P-1
allergen
DOI:
10.1021/acsptsci.2c00022
Publication Date:
2022-08-12T23:50:04Z
AUTHORS (15)
ABSTRACT
Whereas treatment of allergic diseases such as asthma relies largely on the targeting of dysregulated effector pathways, the conceptually attractive alternative of preventing them by a pharmaceutical, at-source intervention has been stymied until now by uncertainties about suitable targets and the challenges facing drug design. House dust mites (HDMs) are globally significant triggers of allergy. Group 1 HDM allergens, exemplified by Der p 1, are cysteine proteases. Their degradome has a strong disease linkage that underlies their status as risk and initiator allergens acting directly and through bystander effects on other allergens. Our objective was to test whether target-selective inhibitors of group 1 HDM allergens might provide a viable route to novel therapies. Using structure-directed design to optimize a series of pyruvamides, we undertook the first examination of whether pharmaceutically developable inhibitors of group 1 allergens might offer protection against HDM exposure. Developability criteria included durable inhibition of clinically relevant signals after a single aerosolized dose of the drug. The compounds suppressed acute airway responses of rats and mice when challenged with an HDM extract representing the HDM allergome. Inhibitory effects operated through a miscellany of downstream pathways involving, among others, IL-33, thymic stromal lymphopoietin, chemokines, and dendritic cells. IL-13 and eosinophil recruitment, indices of Th2 pathway activation, were strongly attenuated. The surprisingly expansive benefits arising from a unique at-source intervention suggest a novel approach to multiple allergic diseases in which HDMs play prominent roles and encourage exploration of these pharmaceutically developable molecules in a clinical setting.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (47)
CITATIONS (3)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....