High-Performance and Chemically Self-Charging Flexible Aqueous Zinc-Ion Batteries Based on Organic Cathodes with Zn2+ and H+ Storage

DOI: 10.1021/acssuschemeng.3c07140 Publication Date: 2024-02-16T07:22:23Z
ABSTRACT
Chemically self-charging aqueous zinc-ion batteries (AZIBs) via air oxidation will provide new opportunities for future wearable electronic devices. Herein, we display two high-performances flexible AZIBs based on trifluorohexaazatrinaphthylene (TFHATN)/trichlorohexaazatrinaphthylene (TCLHATN) cathode, which can be recharged via air without using external power supply. The flexible Zn//TFHATN/Zn//TCLHATN battery presents good mechanical flexibility and higher volumetric energy density of 3.4/3.7 mWh cm-3. The air-recharging capability originates from a spontaneous redox reaction between the discharged TFHATN/TCLHATN cathode and O2 from air. After exposed to air for 15 h, the discharged Zn//TFHATN/Zn//TCLHATN battery can be recharged to 1.2 V around, exhibits high discharge capacity, high-rate performance, higher self-charging cycle stability (8 cycles), and works well in chemical or/and galvanostatic charging mixed modes, displaying good reusability. This work provides a strategy for developing high-performance flexible air-rechargeable AZIBs.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (59)
CITATIONS (13)