Ultrafast and High-Yield Polaronic Exciton Dissociation in Two-Dimensional Perovskites

01 natural sciences 7. Clean energy 0104 chemical sciences
DOI: 10.1021/jacs.1c08900 Publication Date: 2021-11-03T13:15:27Z
ABSTRACT
Layered two-dimensional (2D) lead halide perovskites are a class of quantum well (QW) materials, holding dramatic potentials for optical and optoelectronic applications. However, the thermally activated exciton dissociation into free carriers in 2D perovskites, a key property that determines their optoelectronic performance, was predicted to be weak due to large exciton binding energy (Eb, about 100-400 meV). Herein, in contrast to the theoretical prediction, we discover an ultrafast (<1.4 ps) and highly efficient (>80%) internal exciton dissociation in (PEA)2(MA)n-1PbnI3n+1 (PEA = C6H5C2H4NH3+, MA = CH3NH3+, n = 2-4) 2D perovskites despite the large Eb. We demonstrate that the exciton dissociation activity in 2D perovskites is significantly promoted because of the formation of exciton-polarons with considerably reduced exciton binding energy (down to a few tens of millielectronvolts) by the polaronic screening effect. This ultrafast and high-yield exciton dissociation limits the photoluminescence of 2D perovskites but on the other hand well explains their exceptional performance in photovoltaic devices. The finding should represent a common exciton property in the 2D hybrid perovskite family and provide a guideline for their rational applications in light emitting and photovoltaics.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (50)
CITATIONS (76)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....