Femtosecond Real-Time Probing of Reactions. 19. Nonlinear (DFWM) Techniques for Probing Transition States of Uni- and Bimolecular Reactions

02 engineering and technology 540 0210 nano-technology 530
DOI: 10.1021/jp960265t Publication Date: 2002-07-26T04:43:17Z
ABSTRACT
Degenerate four-wave mixing (DFWM), using ∼60 femtosecond (fs) laser pulses, is introduced to study transition-state dynamics of chemical reactions in the gas phase. The ultrafast techniques are applied to a range of systems, atomic, unimolecular, and bimolecular. It is shown how fs DFWM can be incorporated in different temporal pulse schemes to extract the dynamics. The DFWM beams are configured in a folded boxcar geometry, producing a spatially separated, background-free, femtosecond signal pulse. Aspects of the technique, such as absorption, are investigated. We have taken advantage of the relatively broad spectral width of the fs pulses and extended the techniques to two-color grating experiments in the gas phase. The unimolecular system, NaI, provided a means of testing this new approach. Our experimental observations of the wave packet motion are in excellent agreement with results obtained using laser-induced fluorescence (LIF). A control experiment was also performed on this system, demonstrating ...
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (101)
CITATIONS (135)