Electron–Vibration Interaction in Multichannel Single-Molecule Junctions

02 engineering and technology 0210 nano-technology
DOI: 10.1021/nn404873x Publication Date: 2013-11-19T18:21:14Z
ABSTRACT
The effect of electron-vibration interaction in atomic-scale junctions with a single conduction channel was widely investigated both theoretically and experimentally. However, the more general case of junctions with several conduction channels has received very little attention. Here we study electron-vibration interaction in multichannel molecular junctions, formed by introduction of either benzene or carbon dioxide between platinum electrodes. By combining shot noise and differential conductance measurements, we analyze the effect of vibration activation on conductance in view of the distribution of conduction channels. Based on the shift of vibration energy while the junction is stretched, we identify vibration modes with transverse and longitudinal symmetry. The detection of different vibration modes is ascribed to efficient vibration coupling to different conduction channels according to symmetry considerations. While most of our observations can be explained in view of the theoretical models for a single conduction channel, the appearance of conductance enhancement, induced by electron-vibration interaction, at high conductance values indicates either unexpected high electron-vibration coupling or interchannel scattering.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (48)
CITATIONS (19)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....