Social network architecture of human immune cells unveiled by quantitative proteomics

Proteomics 0301 basic medicine Bodily Secretions Immunity, Cellular Blood Cells Proteome Social Support Cell Communication Mass Spectrometry 3. Good health 03 medical and health sciences Animals Humans Computer Simulation Protein Interaction Maps
DOI: 10.1038/ni.3693 Publication Date: 2017-03-06T16:57:35Z
ABSTRACT
The immune system is unique in its dynamic interplay between numerous cell types. However, a system-wide view of how immune cells communicate to protect against disease has not yet been established. We applied high-resolution mass-spectrometry-based proteomics to characterize 28 primary human hematopoietic cell populations in steady and activated states at a depth of >10,000 proteins in total. Protein copy numbers revealed a specialization of immune cells for ligand and receptor expression, thereby connecting distinct immune functions. By integrating total and secreted proteomes, we discovered fundamental intercellular communication structures and previously unknown connections between cell types. Our publicly accessible (http://www.immprot.org/) proteomic resource provides a framework for the orchestration of cellular interplay and a reference for altered communication associated with pathology.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (62)
CITATIONS (336)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....