p54nrb/NONO regulates lipid metabolism and breast cancer growth through SREBP-1A

Cell Nucleus Mice, Inbred BALB C Breast Neoplasms Mice, SCID Middle Aged Lipid Metabolism 3. Good health DNA-Binding Proteins Mice 03 medical and health sciences 0302 clinical medicine Nuclear Matrix-Associated Proteins Cell Line, Tumor MCF-7 Cells Animals Humans Octamer Transcription Factors Female RNA Interference RNA, Small Interfering Neoplasm Transplantation Cell Proliferation Protein Binding
DOI: 10.1038/onc.2015.197 Publication Date: 2015-07-06T14:07:24Z
ABSTRACT
Dysregulation of lipid metabolism is common in breast cancer. However, the underlying mechanisms remain elusive and the contribution of aberrant lipid metabolism to the malignant phenotypes of breast cancer is poorly understood. Here, we show that the nuclear protein p54(nrb)/Nono is highly expressed in breast cancer tissues as compared with the adjacent normal tissues in human patients. To determine the functions of p54(nrb) in breast cancer, we performed a biochemical screen and identified SREBP-1a, a master activator for genes involved in lipid biosynthesis, as a novel interacting protein of p54(nrb). In human breast cancer tissues, the levels of p54(nrb) and SREBP-1a proteins were positively correlated with each other. Our biochemical analyses showed that the conserved Y267 residue of p54(nrb) was required for its binding to the nuclear form of SREBP-1a. Interestingly, p54(nrb) binding to nuclear SREBP-1a caused an increase of nuclear SREBP-1a protein stability. As a result, p54(nrb) stimulates SREBP-1-meidated transcription of lipogenic genes and lipid production in breast cancer cells. Moreover, both p54(nrb) and SREBP-1a were required for breast cancer cell growth in vitro, and p54(nrb) binding to nuclear SREBP-1a was also critical for breast tumor development in vivo. Together, we conclude that p54(nrb) is a novel regulator of SREBP-1a in the nucleus, and our data suggest that p54(nrb) regulation of SREBP-1a supports the increased cellular demand of lipids for breast cancer growth. Thus, the SREBP pathway may represent a novel target for treating breast cancer.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (47)
CITATIONS (55)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....