Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells

Thin-Film Solar Cells Science Perovskite Solar Cell Technology Materials Science Photovoltaic Cells Seeding 02 engineering and technology 7. Clean energy Article Engineering Chemical engineering Band gap FOS: Electrical engineering, electronic engineering, information engineering Materials Chemistry Nanotechnology Formamidinium Electrical and Electronic Engineering Optoelectronics Applications of Quantum Dots in Nanotechnology Perovskite (structure) FOS: Chemical engineering Photovoltaic system Iodide FOS: Nanotechnology Physics Q Materials science Thin-Film Solar Cell Technology Photovoltaics Chemistry Caesium Solar Cell Efficiency Electrical engineering Physical Sciences Thermodynamics Perovskite Solar Cells Crystallization 0210 nano-technology Inorganic chemistry
DOI: 10.1038/s41467-018-04029-7 Publication Date: 2018-04-17T11:52:23Z
ABSTRACT
AbstractFormamidinium-lead-iodide (FAPbI3)-based perovskites with bandgap below 1.55 eV are of interest for photovoltaics in view of their close-to-ideal bandgap. Record-performance FAPbI3-based solar cells have relied on fabrication via the sequential-deposition method; however, these devices exhibit unstable output under illumination due to the difficulty of incorporating cesium cations (stabilizer) in sequentially deposited films. Here we devise a perovskite seeding method that efficiently incorporates cesium and beneficially modulates perovskite crystallization. First, perovskite seed crystals are embedded in the PbI2 film. The perovskite seeds serve as cesium sources and act as nuclei to facilitate crystallization during the formation of perovskite. Perovskite films with perovskite seeding growth exhibit a lowered trap density, and the resulting planar solar cells achieve stabilized efficiency of 21.5% with a high open-circuit voltage of 1.13 V and a fill factor that exceeds 80%. The Cs-containing FAPbI3-based devices show a striking improvement in operational stability and retain 60% of their initial efficiency after 140 h operation under one sun illumination.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (54)
CITATIONS (356)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....