Palaeoclimate ocean conditions shaped the evolution of corals and their skeletons through deep time
0301 basic medicine
570
03 medical and health sciences
550
13. Climate action
Oceans and Seas
Animals
Seawater
14. Life underwater
Hydrogen-Ion Concentration
Anthozoa
Skeleton
DOI:
10.1038/s41559-020-01291-1
Publication Date:
2020-08-31T16:04:06Z
AUTHORS (12)
ABSTRACT
Identifying how past environmental conditions shaped the evolution of corals and their skeletal traits provides a framework for predicting their persistence and that of their non-calcifying relatives under impending global warming and ocean acidification. Here we show that ocean geochemistry, particularly aragonite-calcite seas, drives patterns of morphological evolution in anthozoans (corals, sea anemones) by examining skeletal traits in the context of a robust, time-calibrated phylogeny. The lability of skeletal composition among octocorals suggests a greater ability to adapt to changes in ocean chemistry compared with the homogeneity of the aragonitic skeleton of scleractinian corals. Pulses of diversification in anthozoans follow mass extinctions and reef crises, with sea anemones and proteinaceous corals filling empty niches as tropical reef builders went extinct. Changing environmental conditions will likely diminish aragonitic reef-building scleractinians, but the evolutionary history of the Anthozoa suggests other groups will persist and diversify in their wake.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (65)
CITATIONS (120)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....