Knotting fractional-order knots with the polarization state of light
Complex Optics
polarization
Nonlinear optics
:Física [Àrees temàtiques de la UPC]
Àrees temàtiques de la UPC::Física
Topologies
Fotònica
Polarització (Llum)
FOS: Physical sciences
Àrees temàtiques de la UPC::Enginyeria de la telecomunicació::Telecomunicació òptica::Fotònica
01 natural sciences
Photonics
Optical physics
0103 physical sciences
Other photonics
:Enginyeria de la telecomunicació::Telecomunicació òptica::Fotònica [Àrees temàtiques de la UPC]
Optical techniques
Polarization (Light)
Physics - Optics
Optics (physics.optics)
DOI:
10.1038/s41566-019-0450-2
Publication Date:
2019-06-10T16:02:43Z
AUTHORS (7)
ABSTRACT
Submitted Manuscript, including a subset of the figures from the published Supplementary Information<br/>The fundamental polarization singularities of monochromatic light are normally associated with invariance under coordinated rotations: symmetry operations that rotate the spatial dependence of an electromagnetic field by an angle $��$ and its polarization by a multiple $����$ of that angle. These symmetries are generated by mixed angular momenta of the form $J_��= L + ��S$ and they generally induce M��bius-strip topologies, with the coordination parameter $��$ restricted to integer and half-integer values. In this work we construct beams of light that are invariant under coordinated rotations for arbitrary $��$, by exploiting the higher internal symmetry of 'bicircular' superpositions of counter-rotating circularly polarized beams at different frequencies. We show that these beams have the topology of a torus knot, which reflects the subgroup generated by the torus-knot angular momentum $J_��$, and we characterize the resulting optical polarization singularity using third-and higher-order field moment tensors, which we experimentally observe using nonlinear polarization tomography.<br/>
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (56)
CITATIONS (105)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....