A robust organic hydrogen sensor for distributed monitoring applications
DOI:
10.1038/s41928-025-01352-y
Publication Date:
2025-03-06T10:03:50Z
AUTHORS (8)
ABSTRACT
Abstract
Hydrogen is an abundant and clean energy source that could help to decarbonize difficult-to-electrify economic sectors. However, its safe deployment relies on the availability of cost-effective hydrogen detection technologies. We describe a hydrogen sensor that uses an organic semiconductor as the active layer. It can operate over a wide temperature and humidity range. Ambient oxygen p-dopes the organic semiconductor, which improves hole transport, and the presence of hydrogen reverses this doping process, leading to a drop in current and enabling reliable and rapid hydrogen detection. The sensor exhibits a high responsivity (more than 10,000), fast response time (less than 1 s), low limit of detection (around 192 ppb) and low power consumption (less than 2 μW). It can operate continuously for more than 646 days in ambient air at room temperature. We show that the sensor outperforms a commercial hydrogen detector in realistic sensing scenarios, illustrating its suitability for application in distributed sensor networks for early warning of hydrogen leaks and preventing explosions or fires.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (59)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....