OGG1-DNA interactions facilitate NF-κB binding to DNA targets
0303 health sciences
DNA Repair
NF-kappa B
Deoxyguanosine
Electrophoretic Mobility Shift Assay
DNA
Article
Cell Line
DNA Glycosylases
Mice
03 medical and health sciences
8-Hydroxy-2'-Deoxyguanosine
Animals
Protein Binding
DOI:
10.1038/srep43297
Publication Date:
2017-03-07T10:35:04Z
AUTHORS (7)
ABSTRACT
AbstractDNA repair protein counteracting oxidative promoter lesions may modulate gene expression. Oxidative DNA bases modified by reactive oxygen species (ROS), primarily as 7, 8-dihydro-8-oxo-2′-deoxyguanosine (8-oxoG), which is repaired by 8-oxoguanine DNA glycosylase1 (OGG1) during base excision repair (BER) pathway. Because cellular response to oxidative challenge is accompanied by DNA damage repair, we tested whether the repair by OGG1 is compatible with transcription factor binding and gene expression. We performed electrophoretic mobility shift assay (EMSA) using wild-type sequence deriving from Cxcl2 gene promoter and the same sequence bearing a single synthetic 8-oxoG at defined 5′ or 3′ guanine in runs of guanines to mimic oxidative effects. We showed that DNA occupancy of NF-κB present in nuclear extracts from tumour necrosis factor alpha (TNFα) exposed cells is OGG1 and 8-oxoG position dependent, importantly, OGG1 counteracting 8-oxoG outside consensus motif had a profound influence on purified NF-κB binding to DNA. Furthermore, OGG1 is essential for NF-κB dependent gene expression, prior to 8-oxoG excised from DNA. These observations imply that pre-excision step(s) during OGG1 initiated BER evoked by ROS facilitates NF-κB DNA occupancy and gene expression.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (53)
CITATIONS (51)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....