Mechanical properties of Li–Sn alloys for Li-ion battery anodes: A first-principles perspective
Physics
QC1-999
02 engineering and technology
0210 nano-technology
7. Clean energy
620
DOI:
10.1063/1.4940131
Publication Date:
2016-01-14T04:58:32Z
AUTHORS (6)
ABSTRACT
Fracture and pulverization induced by large stress during charging and discharging may lead to the loss of electrical contact and capacity fading in Sn anode materials. A good understanding of mechanical properties is necessary for their optimal design under different lithiation states. On the basis of first-principles calculations, we investigate the stress-strain relationships of Li–Sn alloys under tension. The results show that the ideal tensile strengths of Li–Sn alloys vary as a function of Li concentration, and with the increase of Li+ concentration, the lowest tensile strength decreases from 4.51 GPa (Sn) to 1.27 GPa (Li7Sn2). This implies that lithiation weakens the fracture resistance of Li–Sn alloys.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (26)
CITATIONS (23)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....