Excited-state structural characterization of a series of nanosecond-lived [Fe(terpy)2]2+ derivatives using x-ray solution scattering
DOI:
10.1063/5.0237705
Publication Date:
2025-03-31T09:47:26Z
AUTHORS (16)
ABSTRACT
[ F e ( t e r p y ) 2 ] 2 + (terpy = 2,2′:6′,2″-terpyridine) is a transition metal complex where the spin state is photoswitchable and where the properties of the metal-centered quintet excited state (5MC) can be tuned by substituting different electron withdrawing or electron donating groups on the 4′ position of the terpyridine. To better understand the physics determining the photoswitching performance, a deeper insight into the positions of the relevant potential energy surfaces and the molecular structure of the 5MC state is needed. We present a structural investigation based on Time Resolved x-ray Solution Scattering (TR-XSS) by which we determine the average dFe–N bond-length elongation following population of the 5MC state as well as the lifetime of this state in a series of seven modified [Fe(terpy)2]2+ systems in aqueous solution following photo-excitation. The analysis of the TR-XSS data is supported by Density Functional Theory (DFT) and Molecular Dynamics calculations. The quintet state lifetime is determined to vary by more than a factor of 10 (from 1.5 to 16 ns) based on the electron withdrawing/donating properties of the substituting group. Both the DFT calculations and the structural analysis of the experimental data show that the main photo-induced change in metal–ligand bond lengths ΔdFe–N is ∼0.2 Å for all systems.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (67)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....