State-Dependent Inactivation of the α1g T-Type Calcium Channel

0301 basic medicine Patch-Clamp Techniques Models, Neurological Sodium Electric Stimulation Membrane Potentials Rats Electrophysiology Calcium Channels, T-Type Kinetics 03 medical and health sciences Tumor Cells, Cultured Animals Calcium Channels Ion Channel Gating Algorithms
DOI: 10.1085/jgp.114.2.185 Publication Date: 2002-07-26T16:50:20Z
ABSTRACT
We have examined the kinetics of whole-cell T-current in HEK 293 cells stably expressing the α1G channel, with symmetrical Na+i and Na+o and 2 mM Ca2+o. After brief strong depolarization to activate the channels (2 ms at +60 mV; holding potential −100 mV), currents relaxed exponentially at all voltages. The time constant of the relaxation was exponentially voltage dependent from −120 to −70 mV \documentclass[10pt]{article}\usepackage{amsmath}\usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy}\usepackage{mathrsfs}\usepackage[Euler]{upgreek}\pagestyle{empty}\oddsidemargin -1.0in\begin{document}\begin{equation*}({\mathrm{e-fold\;for}}\;31\;{\mathrm{mV}};\;{\mathrm{{\tau}}}\;=\;2.5\;{\mathrm{ms\;at}}\;-100\;{\mathrm{mV}})\end{equation*}\end{document}, but \documentclass[10pt]{article}\usepackage{amsmath}\usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy}\usepackage{mathrsfs}\usepackage[Euler]{upgreek}\pagestyle{empty}\oddsidemargin -1.0in\begin{document}\begin{equation*}{\mathrm{{\tau}}}\;=\;12{\raisebox{1mm}{\line(1,0){6}}}17\;{\mathrm{ms\;from}}-40\;{\mathrm{to}}\;+60\;{\mathrm{mV}}\end{equation*}\end{document}. This suggests a mixture of voltage-dependent deactivation (dominating at very negative voltages) and nearly voltage-independent inactivation. Inactivation measured by test pulses following that protocol was consistent with open-state inactivation. During depolarizations lasting 100–300 ms, inactivation was strong but incomplete (∼98%). Inactivation was also produced by long, weak depolarizations \documentclass[10pt]{article}\usepackage{amsmath}\usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy}\usepackage{mathrsfs}\usepackage[Euler]{upgreek}\pagestyle{empty}\oddsidemargin -1.0in\begin{document}\begin{equation*}({\mathrm{{\tau}}}\;=\;220\;{\mathrm{ms\;at}}\;-80\;{\mathrm{mV}};\;{\mathrm{V}}_{1/2}\;=\;-82\;{\mathrm{mV}})\end{equation*}\end{document}, which could not be explained by voltage-independent inactivation exclusively from the open state. Recovery from inactivation was exponential and fast \documentclass[10pt]{article}\usepackage{amsmath}\usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy}\usepackage{mathrsfs}\usepackage[Euler]{upgreek}\pagestyle{empty}\oddsidemargin -1.0in\begin{document}\begin{equation*}({\mathrm{{\tau}}}\;=\;85\;{\mathrm{ms\;at}}\;-100\;{\mathrm{mV}})\end{equation*}\end{document}, but weakly voltage dependent. Recovery was similar after 60-ms steps to −20 mV or 600-ms steps to −70 mV, suggesting rapid equilibration of open- and closed-state inactivation. There was little current at −100 mV during recovery from inactivation, consistent with ≤8% of the channels recovering through the open state. The results are well described by a kinetic model where inactivation is allosterically coupled to the movement of the first three voltage sensors to activate. One consequence of state-dependent inactivation is that α1G channels continue to inactivate after repolarization, primarily from the open state, which leads to cumulative inactivation during repetitive pulses.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (59)
CITATIONS (86)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....