Access and sustainment of ELMy H-mode operation for ITER pre-fusion power operation plasmas using JINTRAC
Plasma Physics (physics.plasm-ph)
ITER
JINTRAC
Nuclear and particle physics. Atomic energy. Radioactivity
integrated modelling
FOS: Physical sciences
PFPO
scenario development
QC770-798
Physics - Plasma Physics
DOI:
10.1088/1741-4326/adaf3f
Publication Date:
2025-01-28T22:51:29Z
AUTHORS (18)
ABSTRACT
Abstract
In the initial stages of ITER operation, ELM mitigation systems need to be commissioned. This requires controlled flat-top operation in type-I ELMy H-mode regimes. Hydrogen or helium plasma discharges are used exclusively in these stages to ensure negligible production of neutrons from fusion reactions. With the expected higher L–H power threshold of hydrogen and helium plasmas compared to corresponding D and D/T plasmas, it is uncertain whether available auxiliary power systems are sufficient to operate in stable type-I ELMy H-mode. This has been investigated using integrated core and edge/SOL/divertor modelling with JINTRAC. Assuming that the L–H power threshold is well captured by the Martin08 scaling law, the presented simulations have found that 30 MW of ECRH power is likely required for the investigated hydrogen plasma scenarios, rather than the originally planned 20 MW in the 2016 Staged Approach ITER Baseline. However, past experiments have shown that a small helium fraction (∼10%) can considerably reduce the hydrogen plasma L–H power threshold. Assuming that these results extrapolate to ITER operation regimes, the 7.5 MA/2.65 T hydrogen plasma scenario is likely to access stable type-I ELMy H-mode operation also at 20 MW of ECRH.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (60)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....