Strong blocking sets and minimal codes from expander graphs

LINEAR CODES FOS: Computer and information sciences FUNCTION-FIELDS Computer Science - Information Theory Information Theory (cs.IT) 0102 computer and information sciences EXPLICIT CONSTRUCTIONS CURVES 01 natural sciences INTEGRITY Mathematics and Statistics FOS: Mathematics Mathematics - Combinatorics Combinatorics (math.CO)
DOI: 10.1090/tran/9205 Publication Date: 2024-05-24T21:30:11Z
ABSTRACT
A strong blocking set in a finite projective space is of points that intersects each hyperplane spanning set. We provide new graph theoretic construction such sets: combining constant-degree expanders with asymptotically good codes, we explicitly construct sets the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis k minus 1 right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(k-1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-dimensional over alttext="double-struck upper F Subscript q"> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">F</mml:mi> <mml:mi>q</mml:mi> </mml:msub> encoding="application/x-tex">\mathbb {F}_q</mml:annotation> </inline-formula> have size at most alttext="c q k"> <mml:mi>c</mml:mi> encoding="application/x-tex">c k</mml:annotation> for some universal constant alttext="c"> encoding="application/x-tex">c</mml:annotation> </inline-formula>. Since recently been shown to be equivalent minimal linear our gives first explicit </inline-formula>-linear codes length alttext="n"> <mml:mi>n</mml:mi> encoding="application/x-tex">n</mml:annotation> and dimension alttext="k"> encoding="application/x-tex">k</mml:annotation> </inline-formula>, every prime power alttext="q"> encoding="application/x-tex">q</mml:annotation> which alttext="n less-than-or-equal-to c <mml:mo>≤</mml:mo> encoding="application/x-tex">n \leq This solves one main open problems on codes.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (54)
CITATIONS (2)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....