DNA damage causes ATM-dependent heterochromatin loss leading to nuclear softening, blebbing, and rupture
0301 basic medicine
03 medical and health sciences
DOI:
10.1091/mbc.e24-05-0232
Publication Date:
2024-12-20T19:11:16Z
AUTHORS (9)
ABSTRACT
The nucleus must maintain stiffness to preserve its shape and integrity to ensure proper function. Defects in nuclear stiffness caused from chromatin and lamin perturbations produce abnormal nuclear shapes common in aging, heart disease, and cancer. Loss of nuclear shape via protrusions called blebs lead to nuclear rupture that is well established to cause nuclear dysfunction, including DNA damage. However, it remains unknown how increased DNA damage affects nuclear stiffness, shape, and ruptures, which could create a feedback loop. To determine whether increased DNA damage alters nuclear physical properties, we treated mouse embryonic fibroblast cells with DNA damage drugs cisplatin and bleomycin. DNA damage drugs caused increased nuclear blebbing and rupture in interphase nuclei within a few hours and independent of mitosis. Micromanipulation force measurements reveal that DNA damage decreased chromatin-based nuclear mechanics but did not change lamin-based strain stiffening at long extensions relative to wild type. Immunofluorescence measurements of DNA damage treatments reveal the mechanism is an ATM-dependent decrease in heterochromatin leading to nuclear weaken, blebbing, and rupture which can be rescued upon ATM inhibition treatment. Thus, DNA damage drugs cause ATM-dependent heterochromatin loss resulting in nuclear softening, blebbing, and rupture.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (42)
CITATIONS (2)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....