A mechanism of quinolinic acid formation by brain in inflammatory neurological disease: Attenuation of synthesis from L-tryptophan by 6-chlorotryptophan and 4-chloro-3-hydroxyanthranilate
3-Hydroxyanthranilic Acid
Tryptophan
Brain
Myelitis
Quinolinic Acid
Kynurenic Acid
Macaca mulatta
Neopterin
Tryptophan Oxygenase
3. Good health
Biopterins
03 medical and health sciences
Fetus
0302 clinical medicine
Animals
Encephalitis
Indoleamine-Pyrrole 2,3,-Dioxygenase
Kynurenine
Poliomyelitis
DOI:
10.1093/brain/116.6.1425
Publication Date:
2014-07-18T12:43:05Z
AUTHORS (6)
ABSTRACT
Quinolinic acid (QUIN), kynurenic acid (KYNA) and L-kynurenine (L-KYN) are neuroactive kynurenine pathway metabolites that accumulate in inflammatory neurological diseases. These increases were attributed to the induction of indoleamine-2,3-dioxygenase (IDO), the enzyme that converts L-tryptophan into L-KYN. Direct conversion of L-tryptophan into QUIN by brain tissue occurs in conditions of CNS inflammation, but not by normal brain tissue. To investigate whether increased activity of enzymes distal to IDO may determine L-KYN conversion to QUIN, rhesus macaques were inoculated with poliovirus directly into the spinal cord, as a model of focal inflammatory neurological disease (FASEB J. 6, 2977-2989, 1992). Induction of spinal cord IDO (35.9-fold) accompanied smaller, but proportional increases in kynurenine-3-hydroxylase (2.4-fold) and kynureninase (2.3-fold) activities, which were correlated to CSF and tissue QUIN levels, as well as to measures of inflammatory lesions. 3-Hydroxyanthranilate-3,4-dioxygenase activity was unchanged. Cerebrospinal fluid KYNA levels increased in proportion to both IDO activity and L-KYN accumulation, though kynurenine aminotransferase activity was unaffected. Cerebrospinal fluid neopterin, a marker of macrophage and immune activation, accumulated in proportion to the responsive enzymes and metabolites. The cell types involved in producing QUIN were investigated in vitro. Human foetal brain cultures consisting of astrocytes and neurons converted large quantities of [13C6]L-tryptophan into L-KYN when stimulated by gamma-interferon, but very little [13C6]QUIN was formed unless macrophages (THP-1 cells) were first added to the cultures (to model a key component of brain inflammation). [13C6]L-Tryptophan was converted into [13C6]QUIN by either gamma-interferon stimulated macrophages, or following intracisternal administration into poliovirus-infected macaques. Inhibitors of the kynurenine pathway, 6-chlorotryptophan and 4-chloro-3-hydroxyanthranilic acid, attenuated [13C6]QUIN formation by macrophages, and when co-infused with [13C6]L-tryptophan into poliovirus-infected macaques. These results suggest roles for increased activities of IDO, kynurenine-3-hydroxylase and kynureninase in accelerating the synthesis of QUIN, L-KYN and KYNA in conditions of brain inflammation. Macrophage infiltrates, and perhaps microglia, are important sources of QUIN, whereas constitutive brain cells and macrophages are sources of L-KYN. Drugs that inhibit kynurenine pathway enzymes attenuate QUIN formation in the CNS, and provide tools to examine the consequences of reduced QUIN accumulation.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (0)
CITATIONS (126)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....