Harnessing Disordered-Ensemble Quantum Dynamics for Machine Learning
Learning rule
DOI:
10.1103/physrevapplied.8.024030
Publication Date:
2017-08-30T16:33:47Z
AUTHORS (2)
ABSTRACT
The authors describe an alternative to digital quantum computation that uses natural dynamics for information processing. $Q\phantom{\rule{0}{0ex}}u\phantom{\rule{0}{0ex}}a\phantom{\rule{0}{0ex}}n\phantom{\rule{0}{0ex}}t\phantom{\rule{0}{0ex}}u\phantom{\rule{0}{0ex}}m$ $r\phantom{\rule{0}{0ex}}e\phantom{\rule{0}{0ex}}s\phantom{\rule{0}{0ex}}e\phantom{\rule{0}{0ex}}r\phantom{\rule{0}{0ex}}v\phantom{\rule{0}{0ex}}o\phantom{\rule{0}{0ex}}i\phantom{\rule{0}{0ex}}r$ $c\phantom{\rule{0}{0ex}}o\phantom{\rule{0}{0ex}}m\phantom{\rule{0}{0ex}}p\phantom{\rule{0}{0ex}}u\phantom{\rule{0}{0ex}}t\phantom{\rule{0}{0ex}}i\phantom{\rule{0}{0ex}}n\phantom{\rule{0}{0ex}}g$ does not require fine tuning of parameters, is robust against noise, and based on existing devices. Simulations suggest with this approach, a system just 5 7 qubits as powerful recurrent neural network hundreds nodes. This framework artificial intelligence powered by physics enables $t\phantom{\rule{0}{0ex}}e\phantom{\rule{0}{0ex}}m\phantom{\rule{0}{0ex}}p\phantom{\rule{0}{0ex}}o\phantom{\rule{0}{0ex}}r\phantom{\rule{0}{0ex}}a\phantom{\rule{0}{0ex}}l$ machine-learning tasks, such language processing predicting the stock market.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (56)
CITATIONS (208)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....