Charm-strange baryon strong decays in a chiral quark model
Charm (quantum number)
Charm quark
DOI:
10.1103/physrevd.86.034024
Publication Date:
2012-08-24T13:53:33Z
AUTHORS (3)
ABSTRACT
The strong decays of charm-strange baryons up to $N=2$ shell are studied in a chiral quark model. theoretical predictions for the well-determined baryons, ${\ensuremath{\Xi}}_{c}^{*}(2645)$, ${\ensuremath{\Xi}}_{c}(2790)$, and ${\ensuremath{\Xi}}_{c}(2815)$, good agreement with experimental data. This model is also extended analyze other newly observed ${\ensuremath{\Xi}}_{c}(2930)$, ${\ensuremath{\Xi}}_{c}(2980)$, ${\ensuremath{\Xi}}_{c}(3055)$, ${\ensuremath{\Xi}}_{c}(3080)$, ${\ensuremath{\Xi}}_{c}(3123)$. Our given as follows: (i) ${\ensuremath{\Xi}}_{c}(2930)$ might be first orbital ($1P$) excitation ${\ensuremath{\Xi}}_{c}^{\ensuremath{'}}$ ${J}^{P}=1/{2}^{\ensuremath{-}}$ favors $|{\ensuremath{\Xi}}_{c}^{\ensuremath{'}}^{2}P_{\ensuremath{\lambda}}1/{2}^{\ensuremath{-}}⟩$ or $|{\ensuremath{\Xi}}_{c}^{\ensuremath{'}}^{4}P_{\ensuremath{\lambda}}1/{2}^{\ensuremath{-}}⟩$ state. (ii) ${\ensuremath{\Xi}}_{c}(2980)$ correspond two overlapping $1P$ excitations ${\ensuremath{\Xi}}_{c}^{\ensuremath{'}}$. broader resonance mass $m\ensuremath{\simeq}2.98\text{ }\text{ }\mathrm{GeV}$ ${\ensuremath{\Lambda}}_{c}^{+}\overline{K}\ensuremath{\pi}$ final state most likely $|{\ensuremath{\Xi}}_{c}^{\ensuremath{'}}^{2}P_{\ensuremath{\rho}}1/{2}^{\ensuremath{-}}⟩$ state, while narrower $m\ensuremath{\simeq}2.97\text{ ${\ensuremath{\Xi}}_{c}^{*}(2645)\ensuremath{\pi}$ channel $|{\ensuremath{\Xi}}_{c}^{\ensuremath{'}}^{2}P_{\ensuremath{\rho}}3/{2}^{\ensuremath{-}}⟩$ (iii) ${\ensuremath{\Xi}}_{c}(3080)$ could classified $|{\ensuremath{\Xi}}_{c}{S}_{\ensuremath{\rho}\ensuremath{\rho}}1/{2}^{+}⟩$, i.e., radial ($2S$) ${\ensuremath{\Xi}}_{c}$. (iv) ${\ensuremath{\Xi}}_{c}(3055)$ second ($1D$) ${\ensuremath{\Xi}}_{c}$ ${J}^{P}=3/{2}^{+}$ $|{\ensuremath{\Xi}}_{c}^{2}D_{\ensuremath{\lambda}\ensuremath{\lambda}}3/{2}^{+}⟩$ (v) ${\ensuremath{\Xi}}_{c}(3123)$ assigned $|{\ensuremath{\Xi}}_{c}^{\ensuremath{'}}^{4}D_{\ensuremath{\lambda}\ensuremath{\lambda}}3/{2}^{+}⟩$, $|{\ensuremath{\Xi}}_{c}^{\ensuremath{'}}^{4}D_{\ensuremath{\lambda}\ensuremath{\lambda}}5/{2}^{+}⟩$, $|{\ensuremath{\Xi}}_{c}^{2}D_{\ensuremath{\rho}\ensuremath{\rho}}5/{2}^{+}⟩$ As byproduct, we calculate bottom ${\ensuremath{\Sigma}}_{b}^{\ifmmode\pm\else\textpm\fi{}}$, ${\ensuremath{\Sigma}}_{b}^{*\ifmmode\pm\else\textpm\fi{}}$, ${\ensuremath{\Xi}}_{b}^{*}$, which recent observations well.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (45)
CITATIONS (48)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....