Immobilization stress causes increases in tetrahydrobiopterin, dopamine, and neuromelanin and oxidative damage in the nigrostriatal system

immobilization stress Male 0301 basic medicine Dopamine Physiological/metabolism* Nerve Fibers/pathology Superoxide Dismutase/metabolism Mice Nerve Fibers Corpus Striatum/metabolism oxidative stress Enzyme Inhibitors Nerve Degeneration/etiology Nerve Degeneration/pathology Enzyme Inhibitors/pharmacology Mice, Inbred ICR Brain Hypoxanthines/pharmacology Catalase Brain/metabolism* Inbred ICR Substantia Nigra Oxidative Stress* tetrahydrobiopterin Dopamine/metabolism* dopamine neuromelanin Corpus Striatum/pathology Substantia Nigra/pathology Restraint, Physical Tyrosine 3-Monooxygenase/metabolism 570 Tyrosine 3-Monooxygenase 610 Physiological/etiology Restraint Stress 03 medical and health sciences Stress, Physiological Biopterin/analogs & derivatives* Animals Substantia Nigra/metabolism Melanins Brain/pathology* Superoxide Dismutase Catalase/metabolism Corpus Striatum Physiological/complications Biopterins Oxidative Stress Melanins/metabolism* Biopterin/antagonists & inhibitors Hypoxanthines Nerve Degeneration Parkinson’s disease Biopterin/metabolism Physical*
DOI: 10.1111/j.1471-4159.2005.03342.x Publication Date: 2005-09-09T10:06:49Z
ABSTRACT
AbstractOxidative stress is believed to contribute to the pathophysiology of Parkinson's disease, in which nigrostriatal dopaminergic (DA) neurons undergo degeneration. Identification of endogenous molecules that contribute to generation of oxidative stress and vulnerability of these cells is critical in understanding the etiology of this disease. Exposure to tetrahydrobiopterin (BH4), the obligatory cofactor for DA synthesis, was observed previously to cause oxidative damage in DA cells. To demonstrate the physiological relevance of this observation, we investigated whether an overproduction of BH4 and DA might actually occur in vivo, and, if it did, whether this might lead to oxidative damage to the nigrostriatal system. Immobilization stress (IMO) elevated BH4 and DA and their synthesizing enzymes, tyrosine hydroxylase and GTP cyclohydrolase I. This was accompanied by elevation of lipid peroxidation and protein‐bound quinone, and activities of antioxidant enzymes. These increases in the indices of oxidative stress appeared to be due to increased BH4 synthesis because they were abolished following administration of the BH4 synthesis inhibitor, 2,4‐diamino‐6‐hydroxy‐pyrimidine. IMO also caused accumulation of neuromelanin and degeneration of the nigrostriatal system. These results demonstrate that a severe stress can increase BH4 and DA and cause oxidative damages to the DA neurons in vivo, suggesting relevance to Parkinson's disease.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (70)
CITATIONS (69)