Increased neurotransmitter release during long‐term potentiation at mossy fibre–granule cell synapses in rat cerebellum

0301 basic medicine 570 N-Methylaspartate Patch-Clamp Techniques Long-Term Potentiation In Vitro Techniques Cytoplasmic Granules Synaptic Transmission Membrane Potentials 03 medical and health sciences Nerve Fibers Cerebellum 616 Animals rat cerebellum alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid long-term potentiation Neurons Neurotransmitter Agents Excitatory Postsynaptic Potentials mossy fibre-granule cell synapses Increased neurotransmitter Rats 3. Good health Synapses Algorithms
DOI: 10.1113/jphysiol.2003.060285 Publication Date: 2004-04-20T00:45:29Z
ABSTRACT
During long‐term potentiation (LTP) at mossy fibre–granule cell synapses in rat cerebellum synaptic transmission and granule cell intrinsic excitability are enhanced. Although it is clear that changes in granule cell excitability are mediated postsynaptically, there is as yet no direct evidence for the site and mechanism of changes in transmission. To approach this problem, evoked postsynaptic currents (EPSCs) and miniature synaptic currents (mEPSCs) were recorded by patch‐clamp in cerebellar slices obtained from P17–P23 rats. LTP was induced by theta‐burst stimulation paired with depolarization. During LTP, the EPSCs showed a significant decrease in the coefficient of variation (CV; 28.9 ± 5.2%, n= 8; P < 0.002), the number of failures (87.1 ± 41.9%, n= 8; P < 0.04), and the paired‐pulse ratio (PPR; 25.5 ± 4.1%n= 5; P < 0.02). Similar changes were observed by increasing neurotransmitter release (extracellular solutions with high Ca2+/Mg2+ ratio), whereas increases in CV, numbers of failures and PPR occurred when release was decreased (extracellular solutions with low Ca2+/Mg2+ ratio; 10 μm Cl‐adenosine). No changes followed modifications of postsynaptic holding potentials, while CV and failures were reduced when the number of active synapses was increased. LTP was prevented by use of solutions with high Ca2+/Mg2+ ratio. Moreover, LTP and the associated CV decrease were observed in the spillover‐mediated component of AMPA EPSCs and in NMDA EPSCs. During LTP, mEPSCs did not change in amplitude or variability but significantly increased in frequency (47.6 ± 16%, n= 4; P < 0.03). By binomial analysis changes in EPSCs were shown to be due to increased release probability (from 0.6 ± 0.08 to 0.73 ± 0.06, n= 7; P < 0.02) with a constant number of three to four releasing sites. These observations provide evidence for increased neurotransmitter release during LTP at mossy fibre–granule cell synapses.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (49)
CITATIONS (111)