Origin and mitigation of wind noise on balloon-borne infrasound microbarometers

13. Climate action 01 natural sciences 0105 earth and related environmental sciences
DOI: 10.1121/10.0002356 Publication Date: 2020-10-26T11:42:43Z
ABSTRACT
High-altitude monitoring of low-frequency acoustic waves (infrasound) on Earth has regained prominence in recent years, primarily driven by improvements in light-weight sensor technology and advances in scientific ballooning techniques. Balloon-borne infrasound monitoring is also being proposed as a remote sensing technique for planetary exploration. Contrary to ground-based infrasound monitoring, the infrasound noise background in the stratosphere as measured by a balloon remains uncharacterized and the efficacy of wind noise mitigation filters has not been investigated. In this study, an analysis of pressure data collected using infrasound microbarometers during the flight of a long-duration zero pressure balloon is presented. A dramatic reduction of background noise in the stratosphere is demonstrated and it is shown that wind noise mitigation filters are not effective at reducing wind noise under these conditions. Results from this study demonstrate stratospheric balloons as a low-noise platform for infrasound monitoring and motivate the development of improved noise mitigation tools.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (32)
CITATIONS (17)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....