Homogenized NiO x nanoparticles for improved hole transport in inverted perovskite solar cells

Non-blocking I/O Nickel oxide
DOI: 10.1126/science.adj8858 Publication Date: 2023-11-23T19:00:20Z
ABSTRACT
The power conversion efficiency (PCE) of inverted perovskite solar cells (PSCs) is still lagging behind that conventional PSCs, in part because inefficient carrier transport and poor morphology hole layers (HTLs). We optimized self-assembly [4-(3,6-dimethyl-9H-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz) onto nickel oxide (NiOx) nanoparticles as an HTL through treatment with hydrogen peroxide, which created a more uniform dispersion high conductivity attributed to the formation Ni3+ well surface hydroxyl groups for bonding. A 25.2% certified PCE mask size 0.074 square centimeters was obtained. This device maintained 85.4% initial after 1000 hours stabilized output operation under 1 sun light irradiation at about 50°C 85.1% 500 accelerated aging 85°C. obtained 21.0% minimodule aperture area 14.65 centimeters.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (33)
CITATIONS (294)