Measurement of geophysical effects on the large-scale gravitational-wave interferometer

geodynamic effects measurement; Gravitational wave interferometer; laser interferometer with suspended mirrors Space and Planetary Science 0103 physical sciences Astronomy and Astrophysics 01 natural sciences 7. Clean energy Mathematical Physics
DOI: 10.1142/s0218271820500509 Publication Date: 2020-05-26T12:51:10Z
ABSTRACT
Geophysical application of large free-mass laser interferometers, which had been designed merely for the detection of gravitational radiation of an astrophysical nature, are considered. Despite the suspended mass-mirrors, these interferometers can be considered as two coordinate meters even at very low frequency ([Formula: see text][Formula: see text]Hz) are rather accurate two-coordinate distance meters. In this case, the measurement of geodynamic deformations looks like a parallel product of long-term observations dictated by the task of the blind search for gravitational waves (GW) of extraterrestrial origin. Compared to conventional laser strain meters, gravitational interferometers have the advantage of an increased absolute value of the deformation signal due to the 3–4[Formula: see text]km baseline. The magnitude of the tidal variations of the baseline is 150–200[Formula: see text]microns, leading to conceive the observation of the fine structure of geodynamic disturbances. This paper presents the results of processing geophysical measurements made on a Virgo interferometer during test (technical) series of observations in 2007–2009. The specific design of mass-mirrors suspensions in the Virgo gravitational interferometer also creates a unique possibility of separating gravitational and deformation perturbations through a recording mutual angular deviations of the suspensions of its central and end mirrors. It gives a measurement of the spatial derivative of the gravity acceleration along with the geoid of the Earth. In this mode, the physics of the interferometer is considered with estimates of the achievable sensitivity in the application to the classical problem of registration of oscillations of the inner Earth’s core.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (28)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....