Intention-sensitive Preference Learning Network for Personalized Session-based Recommendation
DOI:
10.1145/3727647
Publication Date:
2025-03-31T11:25:03Z
AUTHORS (5)
ABSTRACT
Nowadays, research on session-based recommender systems (SRSs) is one of the hot spots in the recommendation domain. Existing methods make recommendations based on the user’s current intention (also called short-term preference) during a session, often overlooking the specific preferences associated with these intentions. In reality, users usually exhibit diverse preferences for different intentions, and even for the same intention, individual preferences can vary significantly between users. As users interact with items throughout a session, their intentions can shift accordingly. To enhance recommendation quality, it is crucial not only to consider the user’s intentions but also to dynamically learn their varying preferences as these intentions change. In this paper, we propose a novel
I
ntention-sensitive
P
reference
L
earning
N
etwork (IPLN) including three main modules:
intention recognizer
,
preference detector
, and
prediction layer
. Specifically, the
intention recognizer
infers the user’s underlying intention within his/her current session by analyzing complex relationships among items. Based on the acquired intention, the
preference detector
learns the intention-specific preference by selectively integrating latent features from items in the user’s historical sessions. Besides, the user’s general preference is utilized to refine the obtained preference to reduce the potential noise carried from historical records. Ultimately, the fine-tuned preference and intention collaborate to instruct the next-item recommendation in the
prediction layer
. To prove the effectiveness of the proposed IPLN, we perform extensive experiments on two real-world datasets. The experiment results demonstrate the superiority of IPLN compared with other state-of-the-art models.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (36)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....