Tuning of Band Gap of Cathode Li2NiPO4F by Replacing P to Nb and Forming Li2NiNbO4F for Application as 5 V Cathode in Lithium Ion Battery: A Density Functional Theory Study
02 engineering and technology
0210 nano-technology
DOI:
10.1149/1945-7111/ad69c8
Publication Date:
2024-07-31T23:48:21Z
AUTHORS (2)
ABSTRACT
Electrochemical properties of Li2NiPO4F were studied using density functional theory. The obtained voltage, electronic band gap, capacity (∼ for 2 Li+ extraction) and energy density are achieved as 5.33 V, 4.0 eV, 287.3 mAh g−1 and 1531.31 Wh kg−1, respectively. Although, the electrochemical properties of Li2NiPO4F are promising, large electronic band gap would certainly pose a limitation for its commercial application. Nb is a transition metal and its electronegativity is 1.6 which is less than the electronegativity of 2.19 for P. This implies, less operating voltage would be obtained if we replace P in Li2NiPO4F by Nb to form Li2NiNbO4F. However, electronic configuration of Nb is [Kr] 4d45 s1 and the valance state of Nb in Li2NiNbO4F is +5, which in turn specify that, localized Nb d states will reside in conduction band of Li2NiNbO4F and hence the electronic band-gap would be less owing to this localized Nb-d states. Our speculation gets verified by the calculated properties of Li2NiNbO4F obtained through DFT as follows; Voltage, electronic band gap, capacity (∼ for 2 Li+ extraction) and energy density achieved, respectively, are 5.01 V, 3.64 eV (less than LiFePO4), 215.71 mAh g−1, 1080.71 Wh kg−1. Lower electronic band gap of Li2NiNbO4F makes it an alternative to Li2NiPO4F.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (32)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....