Antithrombotic Properties of Water-Soluble Carbon Monoxide-Releasing Molecules

Blood Platelets Male 0301 basic medicine fibrin generation Green Fluorescent Proteins Carbonates CO-releasing molecules (CO-RMs) Arterial Occlusive Diseases Blood Pressure Mice 03 medical and health sciences Fibrinolytic Agents Animals [SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology Boranes Blood Coagulation thrombosis Carbon Monoxide Fibrin Dose-Response Relationship, Drug plasminogen activator inhibitor-1 (PAI-1) Fibrinolysis Fibrinogen carbon monoxide (CO) 3. Good health Mice, Inbred C57BL Disease Models, Animal platelet aggregation Injections, Intravenous Blood Gas Analysis
DOI: 10.1161/atvbaha.112.253989 Publication Date: 2012-07-07T01:01:27Z
ABSTRACT
Objective—We compared the antithrombotic effects in vivo of 2 chemically different carbon monoxide–releasing molecules (CORM-A1 and CORM-3) on arterial and venous thrombus formation and on hemostatic parameters such as platelet activation, coagulation, and fibrinolysis. The hypotensive response to CORMs and their effects on whole blood gas analysis and blood cell count were also examined.Methods and Results—CORM-A1 (10–30 µmol/kg, i.v.), in a dose-dependent fashion, significantly decreased weight of electrically induced thrombus in rats, whereas CORM-3 inhibited thrombosis only at the highest dose used (30 µmol/kg). CORM-A1 showed a direct and stronger inhibition of platelet aggregation than CORM-3 in healthy rats, both in vitro and in vivo. The antiaggregatory effect of CORM-A1, but not CORM-3, correlated positively with weight of the thrombus. Concentration of active plasminogen activator inhibitor-1 in plasma also decreased in response to CORM-A1, but not to CORM-3. Neither CORM-A1 nor CORM-3 had an effect on plasma concentration of active tissue plasminogen activator. CORM-3, but not CORM-A1, decreased the concentration of fibrinogen, fibrin generation, and prolonged prothrombin time. Similarly, laser-induced venous thrombosis observed intravitally via confocal system in green fluorescent protein mice was significantly decreased by CORMs. Although both CORM-A1 and CORM-3 (30 µmol/kg) decreased platelets accumulation in thrombus, only CORM-A1 (3–30 µmol/kg) inhibited platelet activation to phosphatidylserine on their surface.Conclusion—CORM-3 and CORM-A1 inhibited thrombosis in vivo, however CORM-A1, which slowly releases carbon monoxide, and displayed a relatively weak hypotensive effect had a more pronounced antithrombotic effect associated with a stronger inhibition of platelet aggregation associated with a decrease in active plasminogen activator inhibitor-1 concentration. In contrast, the fast CO releaser CORM-3 that displayed a more pronounced hypotensive effect inhibited thrombosis primarily through a decrease in fibrin generation, but had no direct influence on platelet aggregation and fibrynolysis.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (45)
CITATIONS (53)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....