A System Dynamics Model for Energy Planning in Niger
13. Climate action
11. Sustainability
0202 electrical engineering, electronic engineering, information engineering
02 engineering and technology
7. Clean energy
DOI:
10.11648/j.ijepe.20140306.14
Publication Date:
2015-04-10T08:19:53Z
AUTHORS (1)
ABSTRACT
This paper proposes an energy management model using system dynamics (SD) modeling approach. The time span of the model extends from 2003 to 2030. The Model was calibrated and used for the evaluation of six policy scenarios. Population, per capita electricity consumption, and the industrial sectors were identified as key components and used as inputs to predict future electricity supply and demand needs. Particular attention was paid, in the proposed model, to the individual and total amounts of carbon released into the atmosphere. Finally, to demonstrate the usefulness of the model, it was applied to Niger’s electricity sector. The raw data from the past ten years was used as a benchmark for the study. A key factor in this study was Niger’s fast growing population. The quick increase in population will add uncertainties to both the projections and the accuracy of the results. Model results show that by putting a particular emphasis on the national supply, Niger may be energy self-sufficient from 2018 through 2030. The model also indicates that the bond between Nigeria and Niger must be firmly re-strengthened for the latter to be able to meet its future electricity challenges. The proposed model can be used in guiding public policy in developing regions.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (0)
CITATIONS (20)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....