MGST1 facilitates novel KRASG12D inhibitor resistance in KRASG12D-mutated pancreatic ductal adenocarcinoma by inhibiting ferroptosis
MGST1
Research
Lipid peroxidation
Ferroptosis
Pancreatic cancer
Therapeutics. Pharmacology
RM1-950
QD415-436
Biochemistry
MRTX1133 resistance
DOI:
10.1186/s10020-024-00972-y
Publication Date:
2024-11-05T08:02:13Z
AUTHORS (13)
ABSTRACT
Abstract
Background
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer with a low 5-year survival rate. Treatment options for PDAC patients are limited. Recent studies have shown promising results with MRTX1133, a KRASG12D inhibitor that demonstrated potent antitumor activity in various types of tumors with KRASG12D mutation. Resistance to KRAS inhibitors is frequently occurred and one of the main reasons for treatment failure. Understanding resistance mechanisms to novel KRAS inhibitors is crucial to ensure sustained and durable remissions.
Methods
Two KRASG12D inhibitor MRTX1133-resistant PDAC cell lines were established in vitro. The resistance mechanisms to KRASG12D inhibitor MRTX1133 against PDAC in vitro and in vivo were characterized by RNA sequencing, reverse transcript polymerase chain reaction, cytotoxicity test, plasmid transfection, lentivirus transfection, lipid peroxidation detection, malondialdehyde levels detection, glutathione levels detection, western blot, immunofluorescence, nude mice tumorigenesis experiment and immunohistochemistry.
Results
The bioinformatics analysis and transcriptome sequencing showed that ferroptosis was involved in the resistant effect of the KRASG12D inhibitor treatment, and MGST1 was the key molecule against MRTX1133-induced ferroptosis. Increased expression of MGST1 weakened the cytotoxicity of MRTX1133 by inhibiting lipid peroxidation-induced ferroptosis in KRASG12D inhibitor-resistant PDAC cells. Knockdown or overexpression of MGST1 conferred sensitivity or resistance to KRASG12D inhibitor MRTX1133, respectively. Mechanismly, increased nuclear localization and higher levels of active β-catenin were observed in MRTX1133-resistant PDAC cells, which contributed to higher MGST1 expression. Knockdown of CTNNB1 or TCF4 can decreased MGST1 expression. Additionally, we found that PKF-118-310, an antagonist of β-catenin/Tcf4 complex, repressed MGST1 expression. In both in vitro and in vivo models, a synergistic effect was observed when combining MRTX1133 and PKF-118-310 in KRASG12D inhibitor MRTX1133-resistant PDAC cells and tumors.
Conclusion
Our data showed that KRASG12D inhibitor MRTX1133 combined with PKF-118-310 could enhance the effectiveness of MRTX1133 treatment response through induction of ferroptosis via inhibiting MGST1 expression in MRTX1133-resistant PDAC cells and tumors. This evidence may provide a promising strategy to overcome KRASG12D inhibitor MRTX1133 resistance in PDAC patients with KRASG12D mutations.
Graphical Abstract
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (51)
CITATIONS (2)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....