Melatonin receptor depletion suppressed hCG-induced testosterone expression in mouse Leydig cells

Male 0301 basic medicine QH573-671 Research Receptor, Melatonin, MT1 Leydig Cells Apoptosis Endoplasmic Reticulum Stress Chorionic Gonadotropin Melatonin receptor Mice 03 medical and health sciences Gene Knockdown Techniques Testis Animals Steroids Testosterone RNA, Small Interfering ER stress Cytology Endoplasmic Reticulum Chaperone BiP Gene Deletion
DOI: 10.1186/s11658-019-0147-z Publication Date: 2019-03-13T14:03:38Z
ABSTRACT
Melatonin receptors MT1 and MT2 (genes officially named MTNR1A and MTNR1B, respectively) play crucial roles in melatonin-mediated regulation of circadian rhythms, the immune system, and control of reproduction in seasonally breeding animals. In this study, immunolocalization assay showed that MT1 and MT2 are highly expressed in Leydig cell membrane. To understand the biological function of melatonin receptors in hCG-induced testosterone synthesis, we generated melatonin receptor knockdown cells using specific siRNA and performed testosterone detection after hCG treatment. We found that knockdown of melatonin receptors, especially MTNR1A, led to an obvious decrease (> 60%) of testosterone level. Our further study revealed that knockdown of melatonin receptors repressed expression, at both the mRNA level and the protein level, of key steroidogenic genes, such as p450scc, p450c17 and StAR, which are essential for testosterone synthesis. hCG triggered endoplasmic reticulum (ER) stress to regulate steroidogenic genes' expression and apoptosis. To further investigate the potential roles of melatonin receptors in hCG-induced regulation of ER stress and apoptosis, we examined expression of some crucial ER stress markers, including Grp78, Chop, ATF4, Xbp1, and IRE1. We found that inhibition of melatonin receptors increased hCG-induced expression of Grp78, Chop and ATF4, but not Xbp1 and IRE1, suggesting that hCG may modulate IRE1 signaling pathways in a melatonin receptor-dependent manner. In addition, our further data showed that knockdown of MTNR1A and MTNR1B promoted hCG-induced expression of apoptosis markers, including p53, caspase-3 and Bcl-2. These results suggested that the melatonin receptors MTNR1A and MTNR1B are essential to repress hCG-induced ER stress and cell apoptosis. Our studies demonstrated that the mammalian melatonin receptors MT1 and MT2 are involved in testosterone synthesis via mediating multiple cell pathways.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (41)
CITATIONS (31)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....