Branched Chain Amino Acids Activate Messenger Ribonucleic Acid Translation Regulatory Proteins in Human Skeletal Muscle, and Glucocorticoids Blunt This Action1
Adult
Male
0303 health sciences
Ribosomal Protein S6 Kinases
Muscle Proteins
Cell Cycle Proteins
Phosphoproteins
Dexamethasone
3. Good health
Forearm
03 medical and health sciences
Humans
Insulin
Female
Phosphorylation
Carrier Proteins
Muscle, Skeletal
Amino Acids, Branched-Chain
Adaptor Proteins, Signal Transducing
DOI:
10.1210/jcem.86.5.7481
Publication Date:
2014-01-08T17:06:55Z
AUTHORS (6)
ABSTRACT
Branched chain amino acids (BCAA) are particularly effective anabolic agents. Recent in vitro studies suggest that amino acids, particularly leucine, activate a signaling pathway that enhances messenger ribonucleic acid translation and protein synthesis. The physiological relevance of these findings to normal human physiology is uncertain. We examined the effects of BCAA on the phosphorylation of eukaryotic initiation factor 4E-binding protein 1 (eIF4E-BP1) and ribosomal protein S6 kinase (p70S6K) in skeletal muscle of seven healthy volunteers. We simultaneously examined whether BCAA affect urinary nitrogen excretion and forearm skeletal muscle protein turnover and whether the catabolic action of glucocorticoids could be mediated in part by inhibition of the action of BCAA on the protein synthetic apparatus.BCAA infusion decreased urinary nitrogen excretion (P < 0.02), whole body phenylalanine flux (P < 0.02), plasma phenylalanine concentration (P < 0.001), and improved forearm phenylalanine balance (P = 0.03). BCAA also increased the phosphorylation of both eIF4E-BP1 (P < 0.02) and p70S6K (P < 0.03), consistent with an action to activate the protein synthetic apparatus. Dexamethasone increased plasma phenylalanine concentration (P < 0.001), prevented the BCAA-induced anabolic shift in forearm protein balance, and inhibited their action on the phosphorylation of p70S6K. We conclude that in human skeletal muscle BCAA act directly as nutrient signals to activate messenger ribonucleic acid translation and potentiate protein synthesis. Glucocorticoids interfere with this action, and that may be part of the mechanism by which they promote net protein catabolism in muscle.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (64)
CITATIONS (2)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....