an evaluation of sparql federation engines over multiple endpoints
0202 electrical engineering, electronic engineering, information engineering
02 engineering and technology
Evaluation
SPARQL
DOI:
10.13025/s8m34m
Publication Date:
2017-01-01
AUTHORS (5)
ABSTRACT
Due to decentralized and linked architecture underlying Linking Data, running complex queries often require collecting data from multiple RDF datasets. The optimization of the runtime of such queries, called federated queries, is of central importance to ensure the scalability of Semantic-Web and Linked-Data-driven applications. This has motivated a considerable body of work on SPARQL query federation. However, previous evaluations of SPARQL query federation engines do not evaluate the performance of these engines pertaining to the different steps involved in the federated query processing. Consequently, it is difficult to pinpoint the components of the federation engines that need to be improved. This work presents an extended summary of the fine-grained evaluation of SPARQL endpoint federation systems performed in [13]. Beside query runtime as an evaluation criterion, we extend the scope of our performance evaluation by considering additional measures which are important but have not been paid much attention to in the previous studies. Our experimental outcomes lead to novel insights for improving current and future SPARQL federation systems.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES ()
CITATIONS ()
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....