Deep plug-and-play HIO approach for phase retrieval
FOS: Computer and information sciences
Computer Science - Machine Learning
Computer Vision and Pattern Recognition (cs.CV)
Image and Video Processing (eess.IV)
Computer Science - Computer Vision and Pattern Recognition
FOS: Electrical engineering, electronic engineering, information engineering
Electrical Engineering and Systems Science - Image and Video Processing
Machine Learning (cs.LG)
DOI:
10.1364/ao.545152
Publication Date:
2025-01-08T19:00:28Z
AUTHORS (2)
ABSTRACT
In the phase retrieval problem, the aim is the recovery of an unknown image from intensity-only measurements such as Fourier intensity. Although there are several solution approaches, solving this problem is challenging due to its nonlinear and ill-posed nature. Recently, learning-based approaches have emerged as powerful alternatives to the analytical methods for several inverse problems. In the context of phase retrieval, a novel plug-and-play approach, to our knowledge, that exploits learning-based prior and efficient update steps has been presented at the Computational Optical Sensing and Imaging topical meeting, with demonstrated state-of-the-art performance. The key idea was to incorporate learning-based prior to the Gerchberg-Saxton type algorithms through plug-and-play regularization. In this paper, we present the mathematical development of the method including the derivation of its analytical update steps based on half-quadratic splitting and comparatively evaluate its performance through extensive simulations on a large test dataset. The results show the effectiveness of the method in terms of image quality, computational efficiency, and robustness to initialization and noise.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (59)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....