Room-temperature electroluminescence and light detection from III-V unipolar microLEDs without p-type doping

02 engineering and technology 0210 nano-technology
DOI: 10.1364/optica.476938 Publication Date: 2023-02-24T16:00:10Z
ABSTRACT
The twentieth-century semiconductor revolution began with “man-made crystals,” or p-n junction-based heterostructures. This was the most significant step in the creation of light-emitting diodes (LEDs), lasers, and photodetectors. Nonetheless, advances where resistive p-type doping is completely avoided could pave the way for a new class of n-type optoelectronic emitters and detectors to mitigate the increase of contact resistance and optical losses in submicrometer devices, e.g., nanoLEDs and nanolasers. Here, we show that nanometric layers of AlAs/GaAs/AlAs forming a double-barrier quantum well (DBQW) arranged in an n-type unipolar micropillar LED can provide electroluminescence (EL) (emission at 806 nm from the active DBQW), photoresponse (responsivity of 0.56 A/W at 830 nm), and negative differential conductance (NDC) in a single device. Under the same forward bias, we show that enough holes are created in the DBQW to allow for radiative recombination without the need of p-type semiconductor-doped layers, as well as pronounced photocurrent generation due to the built-in electric field across the DBQW that separates the photogenerated charge carriers. Time-resolved EL reveals decay lifetimes of 4.9 ns, whereas photoresponse fall times of 250 ns are measured in the light-detecting process. The seamless integration of these multi-functions (EL, photoresponse, and NDC) in a single microdevice paves the way for compact, on-chip light-emitting and receiving circuits needed for imaging, sensing, signal processing, data communication, and neuromorphic computing applications.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (48)
CITATIONS (8)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....