Growing Glycans in Rosetta: Accurate de novo glycan modeling, density fitting, and rational sequon design

Models, Molecular 0301 basic medicine QH301-705.5 Computational Biology 03 medical and health sciences Polysaccharides Carbohydrate Conformation Biology (General) Databases, Protein Algorithms Software Research Article Glycoproteins
DOI: 10.1371/journal.pcbi.1011895 Publication Date: 2024-06-24T19:35:57Z
ABSTRACT
Carbohydrates and glycoproteins modulate key biological functions. However, experimental structure determination of sugar polymers is notoriously difficult. Computational approaches can aid in carbohydrate structure prediction, structure determination, and design. In this work, we developed a glycan-modeling algorithm, GlycanTreeModeler, that computationally builds glycans layer-by-layer, using adaptive kernel density estimates (KDE) of common glycan conformations derived from data in the Protein Data Bank (PDB) and from quantum mechanics (QM) calculations. GlycanTreeModeler was benchmarked on a test set of glycan structures of varying lengths, or “trees”. Structures predicted by GlycanTreeModeler agreed with native structures at high accuracy for both de novo modeling and experimental density-guided building. We employed these tools to design de novo glycan trees into a protein nanoparticle vaccine to shield regions of the scaffold from antibody recognition, and experimentally verified shielding. This work will inform glycoprotein model prediction, glycan masking, and further aid computational methods in experimental structure determination and refinement.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (69)
CITATIONS (7)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....