Identification of Genomic Regions and the Isoamylase Gene for Reduced Grain Chalkiness in Rice
2. Zero hunger
0303 health sciences
Science
Q
Quantitative Trait Loci
R
Oryza
Starch
Genomics
Chromosomes, Plant
Endosperm
03 medical and health sciences
Species Specificity
Medicine
RNA Interference
Seasons
Isoamylase
Alleles
Research Article
DOI:
10.1371/journal.pone.0122013
Publication Date:
2015-03-19T18:25:38Z
AUTHORS (6)
ABSTRACT
Grain chalkiness is an important grain quality related to starch granules in the endosperm. A high percentage of grain chalkiness is a major problem because it diminishes grain quality in rice. Here, we report quantitative trait loci identification for grain chalkiness using high-throughput single nucleotide polymorphism genotyping of a chromosomal segment substitution line population in which each line carried one or a few introduced japonica cultivar Nipponbare segments in the genetic background of the indica cultivar ZS97. Ten quantitative trait loci regions were commonly identified for the percentage of grain chalkiness and the degree of endosperm chalkiness. The allelic effects at nine of these quantitative trait loci reduced grain chalkiness. Furthermore, a quantitative trait locus (qPGC8-2) on chromosome 8 was validated in a chromosomal segment substitution line-derived segregation population, and had a stable effect on chalkiness in a multiple-environment evaluation of the near-isogenic lines. Residing on the qPGC8-2 region, the isoamylase gene (ISA1) was preferentially expressed in the endosperm and revealed some nucleotide polymorphisms between two varieties, Nipponbare and ZS97. Transgenic lines with suppression of ISA1 by RNA interference produced grains with 20% more chalkiness than the control. The results support that the gene may underlie qPGC8-2 for grain chalkiness. The multiple-environment trials of the near-isogenic lines also show that combination of the favorable alleles such as the ISA1 gene for low chalkiness and the GS3 gene for long grains considerably improved grain quality of ZS97, which proves useful for grain quality improvement in rice breeding programs.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (46)
CITATIONS (42)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....