Seizures Cause Prolonged Impairment of Ventilation, CO2Chemoreception and Thermoregulation

Male Serotonin Epilepsy Respiration Hypothermia Carbon Dioxide Respiration Disorders Mice Death, Sudden 03 medical and health sciences 0302 clinical medicine Seizures NAV1.6 Voltage-Gated Sodium Channel Fenfluramine Animals Female Sudden Unexpected Death in Epilepsy Serotonergic Neurons Body Temperature Regulation
DOI: 10.1523/jneurosci.0450-23.2023 Publication Date: 2023-05-09T18:06:21Z
ABSTRACT
Sudden unexpected death in epilepsy (SUDEP) has been linked to respiratory dysfunction, but the mechanisms underlying this association remain unclear. Here we found that both focal and generalized convulsive seizures (GCSs) in epilepsy patients caused a prolonged decrease in the hypercapnic ventilatory response (HCVR; a measure of respiratory CO2chemoreception). We then studiedScn1aR1407X/+(Dravet syndrome; DS) andScn8aN1768D/+(D/+) mice of both sexes, two models of SUDEP, and found that convulsive seizures caused a postictal decrease in ventilation and severely depressed the HCVR in a subset of animals. Those mice with severe postictal depression of the HCVR also exhibited transient postictal hypothermia. A combination of blunted HCVR and abnormal thermoregulation is known to occur with dysfunction of the serotonin (5-hydroxytryptamine; 5-HT) system in mice. Depleting 5-HT withpara-chlorophenylalanine (PCPA) mimicked seizure-induced hypoventilation, partially occluded the postictal decrease in the HCVR, exacerbated hypothermia, and increased postictal mortality in DS mice. Conversely, pretreatment with the 5-HT agonist fenfluramine reduced postictal inhibition of the HCVR and hypothermia. These results are consistent with the previous observation that seizures cause transient impairment of serotonergic neuron function, which would be expected to inhibit the many aspects of respiratory control dependent on 5-HT, including baseline ventilation and the HCVR. These results provide a scientific rationale to investigate the interictal and/or postictal HCVR as noninvasive biomarkers for those at high risk of seizure-induced death, and to prevent SUDEP by enhancing postictal 5-HT tone.SIGNIFICANCE STATEMENTThere is increasing evidence that seizure-induced respiratory dysfunction contributes to the pathophysiology of sudden unexpected death in epilepsy (SUDEP). However, the cellular basis of this dysfunction has not been defined. Here, we show that seizures impair CO2chemoreception in some epilepsy patients. In two mouse models of SUDEP we found that generalized convulsive seizures impaired CO2chemoreception, and induced hypothermia, two effects reported with serotonergic neuron dysfunction. The defects in chemoreception and thermoregulation were exacerbated by chemical depletion of serotonin and reduced with fenfluramine, suggesting that seizure-induced respiratory dysfunction may be due to impairment of serotonin neuron function. These findings suggest that impaired chemoreception because of transient inhibition of serotonergic neurons may contribute to the pathophysiology of SUDEP.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (70)
CITATIONS (27)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....