Eyes-Closed Safety Kernels: Safety of Autonomous Systems Under Loss of Observability

0209 industrial biotechnology FOS: Electrical engineering, electronic engineering, information engineering Systems and Control (eess.SY) 02 engineering and technology Electrical Engineering and Systems Science - Systems and Control
DOI: 10.15607/rss.2020.xvi.096 Publication Date: 2020-06-30T14:47:47Z
ABSTRACT
A framework is presented for handling a potential loss of observability of a dynamical system in a provably-safe way. Inspired by the fragility of data-driven perception systems used by autonomous vehicles, we formulate the problem that arises when a sensing modality fails or is found to be untrustworthy during autonomous operation. We cast this problem as a differential game played between the dynamical system being controlled and the external system factor(s) for which observations are lost. The game is a zero-sum Stackelberg game in which the controlled system (leader) is trying to find a trajectory which maximizes a function representing the safety of the system, and the unobserved factor (follower) is trying to minimize the same function. The set of winning initial configurations of this game for the controlled system represent the set of all states in which safety can be maintained with respect to the external factor, even if observability of that factor is lost. This is the set we refer to as the Eyes-Closed Safety Kernel. In practical use, the policy defined by the winning strategy of the controlled system is only needed to be executed whenever observability of the external system is lost or the system deviates from the Eyes-Closed Safety Kernel due to other, non-safety oriented control schemes. We present a means for solving this game offline, such that the resulting winning strategy can be used for computationally efficient, provably-safe, online control when needed. The solution approach presented is based on representing the game using the solutions of two Hamilton-Jacobi partial differential equations. We illustrate the applicability of our framework by working through a realistic example in which an autonomous car must avoid a dynamic obstacle despite potentially losing observability.<br/>Accepted at Robotics: Science and Systems 2020, 9 pages<br/>
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (0)
CITATIONS (2)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....