TransNFCM: Translation-Based Neural Fashion Compatibility Modeling
FOS: Computer and information sciences
Vector spaces
Artificial Intelligence and Robotics
User experience
Arts computing
Deep learning
02 engineering and technology
Embeddings
Product design
Computer Science - Information Retrieval
Knowledge representation
Deep neural networks
0202 electrical engineering, electronic engineering, information engineering
Information Retrieval (cs.IR)
DOI:
10.1609/aaai.v33i01.3301403
Publication Date:
2019-09-13T22:02:11Z
AUTHORS (5)
ABSTRACT
Identifying mix-and-match relationships between fashion items is an urgent task in a fashion e-commerce recommender system. It will significantly enhance user experience and satisfaction. However, due to the challenges of inferring the rich yet complicated set of compatibility patterns in a large e-commerce corpus of fashion items, this task is still underexplored. Inspired by the recent advances in multirelational knowledge representation learning and deep neural networks, this paper proposes a novel Translation-based Neural Fashion Compatibility Modeling (TransNFCM) framework, which jointly optimizes fashion item embeddings and category-specific complementary relations in a unified space via an end-to-end learning manner. TransNFCM places items in a unified embedding space where a category-specific relation (category-comp-category) is modeled as a vector translation operating on the embeddings of compatible items from the corresponding categories. By this way, we not only capture the specific notion of compatibility conditioned on a specific pair of complementary categories, but also preserve the global notion of compatibility. We also design a deep fashion item encoder which exploits the complementary characteristic of visual and textual features to represent the fashion products. To the best of our knowledge, this is the first work that uses category-specific complementary relations to model the category-aware compatibility between items in a translation-based embedding space. Extensive experiments demonstrate the effectiveness of TransNFCM over the state-of-the-arts on two real-world datasets.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (0)
CITATIONS (59)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....