Show, Attend and Read: A Simple and Strong Baseline for Irregular Text Recognition

FOS: Computer and information sciences Computer Vision and Pattern Recognition (cs.CV) Computer Science - Computer Vision and Pattern Recognition 0202 electrical engineering, electronic engineering, information engineering 02 engineering and technology
DOI: 10.1609/aaai.v33i01.33018610 Publication Date: 2019-08-20T07:47:31Z
ABSTRACT
Recognizing irregular text in natural scene images is challenging due to the large variance in text appearance, such as curvature, orientation and distortion. Most existing approaches rely heavily on sophisticated model designs and/or extra fine-grained annotations, which, to some extent, increase the difficulty in algorithm implementation and data collection. In this work, we propose an easy-to-implement strong baseline for irregular scene text recognition, using offthe-shelf neural network components and only word-level annotations. It is composed of a 31-layer ResNet, an LSTMbased encoder-decoder framework and a 2-dimensional attention module. Despite its simplicity, the proposed method is robust. It achieves state-of-the-art performance on irregular text recognition benchmarks and comparable results on regular text datasets. The code will be released.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (0)
CITATIONS (263)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....