Neural Architecture Search Using Deep Neural Networks and Monte Carlo Tree Search
FOS: Computer and information sciences
Computer Science - Machine Learning
Computer Science - Artificial Intelligence
Computer Vision and Pattern Recognition (cs.CV)
Computer Science - Computer Vision and Pattern Recognition
Machine Learning (stat.ML)
02 engineering and technology
Machine Learning (cs.LG)
Artificial Intelligence (cs.AI)
Computer Science - Distributed, Parallel, and Cluster Computing
Statistics - Machine Learning
0202 electrical engineering, electronic engineering, information engineering
Distributed, Parallel, and Cluster Computing (cs.DC)
DOI:
10.1609/aaai.v34i06.6554
Publication Date:
2020-06-29T18:58:23Z
AUTHORS (5)
ABSTRACT
Neural Architecture Search (NAS) has shown great success in automating the design of neural networks, but the prohibitive amount of computations behind current NAS methods requires further investigations in improving the sample efficiency and the network evaluation cost to get better results in a shorter time. In this paper, we present a novel scalable Monte Carlo Tree Search (MCTS) based NAS agent, named AlphaX, to tackle these two aspects. AlphaX improves the search efficiency by adaptively balancing the exploration and exploitation at the state level, and by a Meta-Deep Neural Network (DNN) to predict network accuracies for biasing the search toward a promising region. To amortize the network evaluation cost, AlphaX accelerates MCTS rollouts with a distributed design and reduces the number of epochs in evaluating a network by transfer learning, which is guided with the tree structure in MCTS. In 12 GPU days and 1000 samples, AlphaX found an architecture that reaches 97.84% top-1 accuracy on CIFAR-10, and 75.5% top-1 accuracy on ImageNet, exceeding SOTA NAS methods in both the accuracy and sampling efficiency. Particularly, we also evaluate AlphaX on NASBench-101, a large scale NAS dataset; AlphaX is 3x and 2.8x more sample efficient than Random Search and Regularized Evolution in finding the global optimum. Finally, we show the searched architecture improves a variety of vision applications from Neural Style Transfer, to Image Captioning and Object Detection.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (0)
CITATIONS (32)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....