Contrastive Masked Autoencoders for Self-Supervised Video Hashing
FOS: Computer and information sciences
03 medical and health sciences
0302 clinical medicine
Artificial Intelligence (cs.AI)
Computer Science - Artificial Intelligence
Computer Vision and Pattern Recognition (cs.CV)
Computer Science - Computer Vision and Pattern Recognition
Information Retrieval (cs.IR)
Computer Science - Information Retrieval
DOI:
10.1609/aaai.v37i3.25373
Publication Date:
2023-06-27T16:34:03Z
AUTHORS (5)
ABSTRACT
Self-Supervised Video Hashing (SSVH) models learn to generate short binary representations for videos without ground-truth supervision, facilitating large-scale video retrieval efficiency and attracting increasing research attention. The success of SSVH lies in the understanding of video content and the ability to capture the semantic relation among unlabeled videos. Typically, state-of-the-art SSVH methods consider these two points in a two-stage training pipeline, where they firstly train an auxiliary network by instance-wise mask-and-predict tasks and secondly train a hashing model to preserve the pseudo-neighborhood structure transferred from the auxiliary network. This consecutive training strategy is inflexible and also unnecessary. In this paper, we propose a simple yet effective one-stage SSVH method called ConMH, which incorporates video semantic information and video similarity relationship understanding in a single stage. To capture video semantic information for better hashing learning, we adopt an encoder-decoder structure to reconstruct the video from its temporal-masked frames. Particularly, we find that a higher masking ratio helps video understanding. Besides, we fully exploit the similarity relationship between videos by maximizing agreement between two augmented views of a video, which contributes to more discriminative and robust hash codes. Extensive experiments on three large-scale video datasets (i.e., FCVID, ActivityNet and YFCC) indicate that ConMH achieves state-of-the-art results. Code is available at https://github.com/huangmozhi9527/ConMH.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (0)
CITATIONS (14)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....