Harnessing Holistic Discourse Features and Triadic Interaction for Sentiment Quadruple Extraction in Dialogues
Feature models
Artificial Intelligence and Robotics
Performance
Heterogeneous graph
Numerical Analysis and Scientific Computing
004
620
DOI:
10.1609/aaai.v38i16.29807
Publication Date:
2024-03-25T11:45:33Z
AUTHORS (7)
ABSTRACT
Dialogue Aspect-based Sentiment Quadruple (DiaASQ) is a newly-emergent task aiming to extract the sentiment quadruple (i.e., targets, aspects, opinions, and sentiments) from conversations. While showing promising performance, the prior DiaASQ approach unfortunately falls prey to the key crux of DiaASQ, including insufficient modeling of discourse features, and lacking quadruple extraction, which hinders further task improvement. To this end, we introduce a novel framework that not only capitalizes on comprehensive discourse feature modeling, but also captures the intrinsic interaction for optimal quadruple extraction. On the one hand, drawing upon multiple discourse features, our approach constructs a token-level heterogeneous graph and enhances token interactions through a heterogeneous attention network. We further propose a novel triadic scorer, strengthening weak token relations within a quadruple, thereby enhancing the cohesion of the quadruple extraction. Experimental results on the DiaASQ benchmark showcase that our model significantly outperforms existing baselines across both English and Chinese datasets. Our code is available at https://bit.ly/3v27pqA.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (0)
CITATIONS (3)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....